

ABRM Regenerative Medicine Board Certification Review Course

Module I – The History of Regenerative Medicine

Greek Mythology (Heroid)

- Prometheus stole fire from Olympus, thereby offending
 Zeus
- Prometheus was banished and chained; an eagle came each night to pick at his liver
- Prometheus' liver would regenerate each day

300 BC: Aristotle

- Wrote two major works on regeneration in the animal realm based on observations of the regrowth of animal tails
- Hypothesized that biological form originates from undifferentiated matter

Mayenschein J. **Regenerative medicine's historical roots in regeneration, transplantation, and translation.** Develop Biol. Volume 358, Issue 2, 15 October 2011, Pages 278–284

1700s: Abraham Trembley

- Regeneration in freshwater polyps (hydra)
- First cloning experiment
- Cloned 50 polyps from single organism
- Plant vs. animal

1868: Ernst Haeckel (German Biologist)

- Darwinist
- Used transitions from evolution to embryology
- Used term "Stem Cell" to describe:
 - Unicellular organism as ancestor of multicellular organisms
 - Example: fertilized egg becomes a whole organism

1887 Theodor Boveri (German Biologist)

- Identified the earliest embryonic germ cells (roundworm Ascaris)
- Discovered that only the germ cell lineage contains the full complement of chromatin initially present in the fertilized egg
- Concluded that these cells are true Stem Cells since chromatin is not fragmented during cell division

1892: Valentin Haecker (German Zoologist)

- Studied development of the crustacean *Cyclops*
- Discovered a large cell which became internalized during gastrulation
- Observed that this 'Stem Cell' underwent asymmetric cell division with one daughter cell becoming mesodermal and the other a replica germ cell

1896: E.B. Wilson (Columbia University)

- First Cell Biologist
- Stem Cells: "special cells able to give rise to specialized cells"
- Created the concept of differentiation

1893: William Coley (New York University)

- Father of Cancer Immunotherapy
 - Used bacteria as immunotherapy agent for sarcoma
 - Streptococcus tumor injections
 - Coley's toxins

1907: Ross Granville Harrison (Johns Hopkins, Yale)

- Nerve cell differentiation in tadpole model
- Neuroblast differentiation in hanging drop of lymph as culture medium
- First stem cell study and tissue culture

1909: Alexander Maximow (St. Petersburg Military Academy)

- Hypothesized on existence of Hematopoietic Stem Cells (HSC) as precursors of blood cells
- Unitarian theory of hematopoiesis

1924: Alexander Maximow

• Identifies single precursor cell within mesenchyme which gives rise all types of blood cells (HSC)

1956: E. Donnall Thomas (U. Washington)

- First successful Bone Marrow Transplant due to matched tissue types
- Donor Recipient: siblings (leukemia)
- First successful unrelated donor-recipient bone marrow transplant (1977)
- Nobel Prize in 1990

1958: Sir John B. Gurdon (University of Oxford)

- Removed somatic cell nucleus from tadpole and implanted in tadpole egg
- Successful frog cloning
- Nobel Prize 2012

Gurdon, J. B.; Elsdale, T. R.; Fischberg, M. (1958). "Sexually Mature Individuals of Xenopus laevis from the Transplantation of Single Somatic Nuclei". Nature. **182** (4627): 64–65.

1961-63: Ernest McCulloch and James Till (Ontario Cancer Institute)

- Irradiated recipient BM in mice
- Transplanted donor BM cells caused spleen nodules in recipient
- Demonstrated that each nodule originated from singular cell
- Nodules contained cells of all 3 different blood cell lines
- Each nodule originated from single HSC

1965: Joseph Altman and Gopal Das (MIT Labs)

- Demonstrated adult neurogenesis in rodent brains: Neural Stem Cells
- Contradicted "no new neurons" dogma

1968: Robert Edwards and Barry Bavister (University of Cambridge)

- First in-vitro fertilization of human egg
- Used new bicarbonate-based culture medium containing bovine serum albumin
- Edwards: Nobel Prize 2010

1968: Robert A. Good (University of Minnesota)

- Father of Immunology
- Performed first successful BM Transplant for Immune Disease
- HLA compatible sibling donor

1970: Leroy Stevens (Jackson Laboratory, Maine)

- Discovered teratoma in mice scrotum
- Teratoma: hair, bone, intestine blood tissue
- Includes mix of differentiated and undifferentiated cells
- Discovered Embryonic Stem Cells in murine blastocysts

1970: Alexander Friedenstein (Academy of Sciences, Moscow)

- Discovered Mesenchymal Stem Cells in Bone Marrow (stromal MSC)
- In-vitro Colony Forming Units (CFU) of Bone Marrow
- Selected plastic adherent cells
- Final CFU-F growth documented Osteocytes

1974: Rudolph Jaenisch and Beatrice Mintz (Salk Institute)

- Pioneered Genetically Modified Organisms (GMOs)
- Inserted foreign DNA into mouse embryo (DNA transfection)
- Used retrovirus DNA insertion technique

1975: George Kohler and Cesar Milstein (Cambridge)

- Discovery of monoclonal antibodies
 - Revolutionized Immunotherapy
 - Merged myeloma cells with anti-body producing B-Cells
 - B-Cells now divided rapidly
 - Hybridoma technology

1981: Martin Evans and Gail Martin (Cambridge and UCSF)

- Coined the term "Embryonic Stem Cells"
- First Mouse ESC culture

1987: Andrew Lassar and Harold Weintraub (Hutchinson Cancer Research Institute)

- Fibroblast to myoblast conversion
- Evidence of trans-differentiation

1987 Arnold Caplan (Case Western University)

- Formally introduced the term "Mesenchymal Stem Cell" (MSC)
- Delineated specific phenotypic expressions of MSCs
- Broader differentiation potential than previously envisioned
- Popularized the clinical potential of MSCs

1989: Mario Capecchi, Martin Evans and Oliver Smithies

- Created the first "knock-out mice"
- Mice created from embryonic stem cells
- Homologous gene recombination
- Disruption of gene sequence (genes "knocked out")
- Creates "Chimeric Mouse"
- Nobel Prize 2007

Thomas, K. R.; Capecchi, M. R. (1987). "Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells". Cell. **51** (3): 503–512.

1989: Joseph and Charles Vacanti and Robert Langer (University of Massachusetts, MIT)

- Coined term "Tissue Engineering"
- Performed first in-vitro cell seeding onto biodegradable scaffold
- Created first xenogenic organ experiment

1993: Francisco Mojica (University of Alicante, Spain)

- Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)
 - Powerful gene editing tool
 - Uses nuclease (Cas-9) to "cut" specific DNA location
 - Palindropic repeats: repetitive nucleotide sequence same in both directions

1997: Dominique Bonnet and John Dick (Hospital for Sick Children, Toronto)

- AML Leukemia caused by cancerous HSCs
- Leukemic transformation
- Concept of "Cancer Stem Cell"
- CD 24, CD44, CD133

Bonnet D, Dick JE. **Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.** *Nature Medicine* **3**, 730 - 737 (1997)

1997: Ian Wilmut and Keith Campbell (Roslin Institute, Scotland)

- Dolly the Sheep
- Somatic Cell Nuclear Transfer (SCNT)
- Adult nucleus implanted in enucleated, fertilized egg

1998: James Thomson and Jeffrey Jones (University of Wisconsin)

- First to isolated and culture human embryonic Stem cells from blastocysts
- Utilized embryos from in-vitro fertilization
- Pluripotency of Embryonic Stem Cells

2000: NIH Guidelines on Pluripotent Stem Cells

- ESCs must be obtained from private fertility sources
- Excess of Donor's needs only
- Donor consent required

2005: Magdalena Kucia and Mariusz Ratajczak (University of Louisville)

- Discovered non-hematopoietic tissue committed Stem Cells, eventually termed 'Very Small Embryonic-Like Stem Cells' (VSEL) in mice
- 2008: VSEL isolation in humans
- Initially thought to be cell debris due to small size (3-5 micron)

2006: Shinya Yamanaka and Kazutoshi Takahashi (Kyoto University, Japan)

- Adult murine fibroblasts converted into embryonic-like Stem Cells
- Used retrovirus to enter genetic code termed "induced pluripotent Stem Cells" (iPSC)
- Nobel Prize 2007 and 2012

2006: Kim Kitai and George Daley (Boston Children's Hospital)

- Demonstrated parthenogenesis in mice
- Asexual cell reproduction from unfertilized eggs
- Identical paired chromosomes
- Potential alternative to SCNT

Kitai K et al. Histocompatible Embryonic Stem Cells by Parthenogenesis. *Science* 26 Jan 2007: Vol. 315, Issue 5811, pp. 482-486

2007/2008 Rudolf Jaenisch (Whitehead Institute, MIT)

- 2007: Used iPSC method to generate murine hematopoietic precursor cells (HPC)
 - Used HPCs to successfully treat induced Sickle Cell Anemia in mice
- 2008: Used iPSC method to generate neuronal precursor cells (NPC)
 - Used NPCs to successfully treat induced Parkinson's Disease in mice

2008: Qiao Zhou and Juliana Brown (Harvard Stem Cell Institute, Boston Children's Hospital)

- Converted rodent pancreatic exocrine cells into insulin-producing cells
- Transcription Factors: Ngn3, Mafa, and Pdx1
- Skips the iPSC step

2010: Deepak Srivastava (Gladstone Institute, California)

- Direct reprograming of mouse cardiac fibroblasts into functional cardiomyocytes
- Identified specific reprograming transcription factors (Gata4, Mef2c, and Tbx5)

2010 Mari Dezawa (Kyoto University)

- Multi-lineage Differentiating Stress Enduring (MUSE)
 Stem Cell Discovery
 - Sources: Bone Marrow, Skin Fibroblast
 - Inactive Circulating Form
 - Activated by physiological stress
 - Stress Enduring
 - Engrafting

2013: Shoukhrat Mitalipov (Oregon Health Science University)

- SCNT technique for cloning: NT-ESCs
- Fibroblast nuclear transfer

Tachibana M. Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell Volume 153, Issue 6, p1228-1238, 6 June 2013

2014: Dieter Egli and Young Gie Chung (NY Stem Cell Foundation, University of Seoul)

- Therapeutic Cloning using SCNT
- HESCs from adult cells
- Egli team uses fibroblasts from diabetic patient and convert to insulin producing beta cells

Yamada M. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510, 533-536 (26 Jun 2014)

2014: Masayo Takahashi (Ryken Center for Developmental Biology)

- Retinal Regeneration using retinal pigment iPSCs
- Age related Macular Degeneration
- First patient dosed: September, 2014
- Second patient: genomic mutation in iPSCs
- Trial temporarily on hold, then resumed

2016: Juan Carlos Izpisua Belmonte (Salk Institute)

- Reversal of cellular and physiologic hallmarks of aging
- Transient expression of cellular reprogramming factors
 - Oct4, Sox2, Klf4, c-Myc
- Intermittent gene activation (cyclic induction)
 - Increase life span (30%)
 - Rejuvenation of mice with progeria
 - No tumorigenesis

2017: First U.S. FDA approved Gene Therapy product

- Kymriah (tisagenlecleucel)
 - Genetically-modified autologous T-cell immunotherapy
- Indication
 - Acute lymphoblastic leukemia (ALL)

2018: James P. Allison and Tasuko Honjo

(MD Anderson, Kyoto University)

- Cancer Immunotherapy
- Immune Checkpoint Blockage
 - Ipilimumab (prostate, bladder, NSCCA)
 - Nivolumab (lung)
 - Pembrolizumab (breast, gastric)
 - Atezolizumab (breast, colorectal)
- 2018 Nobel Prize in Physiology

2019: David Sinclair (Harvard University)

- Partial Cellular Reprogramming
- Combination of three Transcription Factors
 - Oct4, Sox2, Klf4
- Cellular DNA Rejuvenation
- Documented neuronal recovery
 - Murine optic nerve occlusion study

Stem Cell Clinical Trials (Q3, 2022)

Phase I

Active: 342

Phase II

Active: 733

Phase III

Active: 147

Primary Disease Targets:

- Neurological Disease
- Cardiovascular Disease
- Liver Disease
- Lung Disease
- Diabetes

Gene Therapy Clinical Trials (Q3, 2022)

Phase I

Active: 264

Phase II

Active: 249

Phase III

Active: 32

Primary Disease Targets:

- Myeloma
- Non-Hodgkins Lymphoma
- Acute Myelogenous Leukemia
- B-Cell Lymphoma
- Ovarian Cancer

FDA Approved Stem Cell and Gene Therapy Products (2023)

FDA

- Abecma (Idecabtagene vicleucel)
 - Cell-based gene therapy to treat multiple myeloma.
- Adstiladrin (nadofaragene firadenovec-vncg)
 - Gene therapy for the treatment of bladder cancer
- Allocord
 - Hematopoietic Progenitor Cells from Cord Blood
- Breyanzi (lisocabtagene maraleucel)
 - CAR-T cell therapy for B-Cell Lymphoma
- Carvykti (Ciltacabtagene autoleucel)
 - CAR-T cell therapy for Multiple Myeloma
- Clevecord
 - Hematopoietic Progenitor Cells from Cord Blood

FDA Approved Stem Cell and Gene Therapy Products (2023)

- Ducord
 - Hematopoietic Progenitor Cells from Cord Blood
- Gintuit
 - Allogeneic Cultured Keratinocytes and Fibroblasts for Mucogingival conditions
- Hemacord
 - Hematopoietic Progenitor Cells from Cord Blood
- Hemegenix (Etranacogene dezaparvovec)
 - Gene therapy used for the treatment of hemophilia B.
- Imlygic (talimogene laherparepvec)
 - Genetically modified oncolytic viral therapy for melanoma
- Kymriah (tisagenlecleucel)
 - CAR T cell treatment for B-cell acute lymphoblastic leukemia

FDA Approved Stem Cell and Gene Therapy Products (2023)

- Laviv (azficel)
 - Autologous culture expanded fibroblasts for nasolabial wrinkles
- Luxturna Adenovirus Gene Therapy (Voretigene Neparvovec-rzyl)
 - Gene therapy for Retinal Dystrophy
- MACI
 - Autologous cultured chondrocytes on Porcine Collagen Membrane
- Omisirge (omidubicel-only)
 - Nicotinamide-modified allogeneic hematopoietic progenitor cell therapy derived from cord blood
- Provenge (sipuleucel-T)
 - Autologous cell-based cancer immunotherapy for prostate cancer
- Rethymic
 - Allogeneic process thymus tissue for congenital athymia
- Skysona (elivaldogene autotemcel)
 - Autologous gene therapy for cerebral adrenoleukodystrophy

FDA Approved Stem Cell and Gene Therapy Products (2023)

- Stratagraft
 - Allogeneic cellularized scaffold product indicated for the treatment of adults with thermal burns
- Tecartus (brexucabtagene autoleucel)
 - Cell-based gene therapy medication for the treatment of mantle cell lymphoma and acute lymphoblastic leukemia
- Vyjuvek (beremagene geperpavec)
 - Gene therapy indicated for the treatment of wounds
- Yescarta (axicabtagene ciloleucel)
 - CAR-T Cell therapy for B-cell lymphoma
- Zynteglo (betibeglogene autotemcel)
 - Gene therapy for beta thalassemia
- Zolgensma (onasemnogene abeparvovec-xioi)
 - Gene therapy to treat spinal muscular atrophy

Phases in Regenerative Medicine:

- 1. Regenerative Medicine 1.0: 1980-2006: Focus on research
- 2. Regenerative Medicine 2.0: 2006-?: Focus on product development

ABRM Regenerative Medicine Board Certification Review Course

Module I – History of Regenerative Medicine

